

Industry efforts in Arctic spill response technology development

Mathijs G.D. Smit
Chair Environmental Effects Technical WG,
Arctic Response Technology JIP

May 24, 2019 GRACE Final Conference Tallinn

Outline

- Background
- Global Collaboration
- Arctic OSR JIP Objectives
- Programme Key findings
- Conclusions

ART JIP Overview

2005-2009

Renewed Arctic exploration interest

2010–2012 JIP Planning

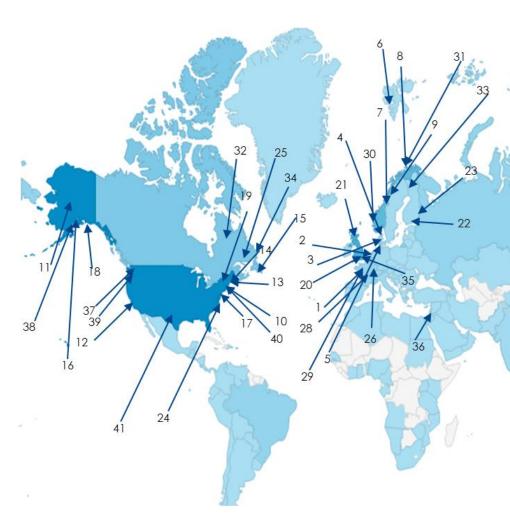
- Build on decades of prior Arctic OSR Research
- Focus on continuous technology improvement
- \$21.5M, nine member companies

2012–2017 Execution

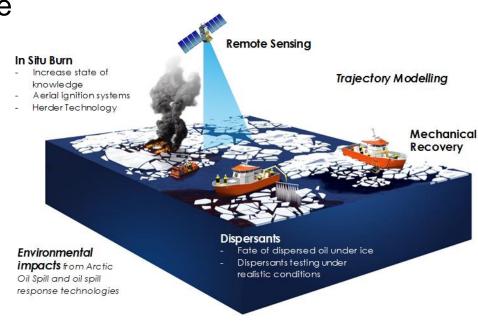
- Collate existing data & conduct new research
- Connect broad range of research stakeholders
- Most extensive Arctic OSR JIP effort to date

2017 Completion

Results and findings extensively communicated

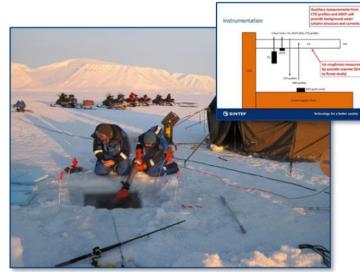


Global Collaboration


- 1. Cedre Brest, France
- 2. IMARES, The Netherlands
- 3. COWI, Denmark
- 4. DTU Byg Department of Civil Engineering, Technical University of Denmark, Denmark
- 5. DCE Danish Centre for Environment and Energy, Aarhus University, Denmark
- 6. University Centre in Svalbard, Norway
- 7. SINTEF, Trondheim, Norway
- 8. Akvaplan-niva, Tromsø, Norway
- 9. The Nansen Environmental and Remote Sensing Centre (NERSC), Bergen, Norway
- 10. RPS-ASA, Rhode Island, USA
- 11. University of Alaska, Fairbanks, Fairbanks, USA
- 12. RAMBOLL/ENVIRON, Emeryville, California, USA
- 13. US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL), New Hampshire, USA
- 14. Bigelow Laboratories, Maine, USA
- 15. C-CORE, St. Johns, Newfoundland, Canada
- 16. Alaska Clean Seas, Anchorage, US
- 17. Woods Hole Oceanographic Institute, Massachusetts, USA
- 18. The Prince William Sound Oil Spill Recovery Institute (OSRI), Cordova, Alaska, USA
- 19. SL Ross Environmental Research Ltd., Ottawa, Canada
- 20. Hill and Knowlton Strategies, London, UK
- 21. Polar Ocean Service, Taynuit, UK
- 22. Aker Arctic, Helsinki, Finland
- 23. LAMOR, Porvoo, Finland
- 24. DESMI AFTI, Buffalo, New York
- 25. Alun Lewis Consultancy, Ottawa
- 26. University of Hamburg, Germany
- 28. The Glaciology and Environmental Geophysics Laboratory (LGGE), Grenoble, France
- 29. Jean Kuntzmann Laboratory, Saint-Martin-d'Hères, France
- 30. International Research Institute of Stavanger (IRIS), located in Stavanger Norway)
- 31. Arctic University of Norway-UiT' (Tromsø, Norway)
- 32. The 'University of Laval' (in Quebec city, Canada)
- 33. The 'Knipovich Polar Research Institute of Marine Fisheries and Oceanography' (Murmansk, Russia)
- 34. ING Robotic Aviation, Ottawa, ON
- 35. Plymouth University, Plymouth, UK
- 36. Ben Gurion University, Be-er Sheva, Israel
- 37. Waypoint Aeronautical, Everett, Washington
- 38. ASRC Energy Services, Anchorage, USA
- 39. Spiltec, Woodinville, USA
- 40. RPS-ASA, South Kingston, Rhode Island, USA
- 41. LGL Ecological Research Associates, Bryan Texas, USA

ART JIP Objectives

- Improve Arctic oil spill response capabilities in six key areas.
- Support Net Environmental Benefit Analysis (NEBA) of response options.
- Define response operating boundaries.
- Develop new OSR technologies for the Arctic.
- Disseminate information on best Arctic response practices.



Dispersants

Key Outcome

 ART JIP reinforces previous research that dispersants can work in the Arctic and under certain conditions will be enhanced by presence of ice.

- New understanding of expected dispersant effectiveness vs key variables.
- Treated and untreated oil remain dispersible after release from melted ice.
- Model results showing insignificant impacts to Alaska Arctic cod population from dispersant scenarios.

Under ice measurements, SINTEF, Mar. 2015

Dispersant testing, SINTEF, Apr. 2015

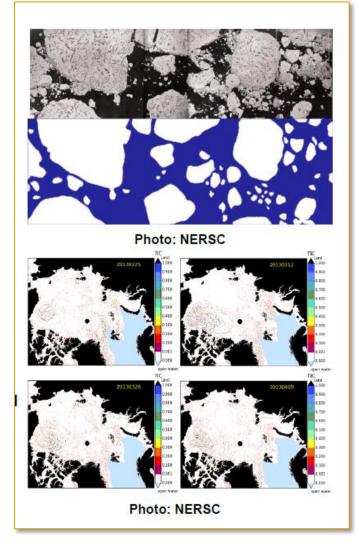
Environmental Effects

Key Outcome

- ART JIP reviewed and extended the available science base on oil spill impacts in an Arctic environment to support Net Environmental Benefit Analysis (NEBA).
- Prioritized gaps were addressed though laboratory, modelling and field tests.

- Searchable database created referencing over 1000 papers; accessed via a webbased literature access tool.
- Improved understanding of impact on ecological systems from oil frozen into ice

Microcosms in-situ, Feb. - Jul. 2015



Oil Spill in Ice Modelling

Key Outcome

 ART JIP improved the predictive capability of existing trajectory models that will provide more accurate predictions of oiled ice movements in a range of ice conditions.

- Higher-resolution ice drift model is now available that outperforms existing models.
- Standardization of outputs to facilitate data exchange.
- Improved existing oil spill models OilMap and OSCAR.

Remote Sensing

Key Outcome

 ART JIP has led to a better understanding of relative sensor capabilities, under a range of oil and ice conditions using range sensors above and below the ice.

- Most promising sensors evaluated and qualified under different conditions. All of the sensors tested were capable of detecting oil in ice under certain conditions.
- Operationally-oriented guide responders can use to select the most effective sensors for a given set of conditions.

Mounting sub sea sensors

Subsea and surface sensors

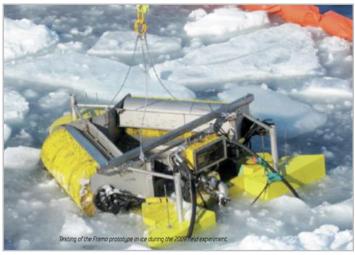
In-situ Burning

Key Outcome

 ART JIP provides support that ISB can be conducted in a wide variety of ice conditions and confirms that ISB is the technique with highest potential for oil removal in presence of ice.

- State of knowledge of ISB in ice-affected waters has been consolidated.
- Rapid response capability demonstrated using herders in combination with burning and new delivery system prototyped.
- Evidence low volumes of herders should pose no significant environmental risk.

Large-scale basin tests of herders and burning in Alaska



Mechanical Recovery

Key Outcome

- Integrating field operations with support tools like real-time remote sensing will lead to greater improvements by enhancing the performance of existing recovery systems.
- All tools in the tool kit needed.

- Physics of oil spreading and ability of equipment to contact recoverable oil limit efficiency
- Game changing mechanical recovery equipment concept is not realistic.

Mechanical Equipment Test - Photo: SINTEF

Testing at Ohmsett - Photo: J. .Mullin

ART JIP Legacy

Timeline: 40 years Arctic OSR Research

Summary and Synthesis reports

>30 Technical reports and Searchable environmental effects database

>20 Peer Reviewed papers

All products except Peer Reviewed papers can be found on ART JIP's website: http://arcticresponse.wpengine.com/

Concluding Remarks

- There is a large body of work (>40 years) underpinning Arctic OSR
- ART JIP has consolidated this experience, advanced the scientific basis underpinning response options, and developed new capability.
- All tools in the toolbox are needed. Advanced tools, ISB and dispersants, must be available in addition to mechanical recovery.
- Increased future collaboration is strongly encouraged between the oil and natural gas industry, regulators, and informed stakeholders.
- IOGP continues to promote the ART JIP and is working with IPIECA to improve the strategic framework Arctic OSR plan preparation and response.

Project 'Coat hanger' (2019)

- Ongoing stakeholder uncertainty about Arctic OSR capabilities
- Wealth of information on methods and tools, but these can be fairly contrasting and hard for non-experts to understand
- Industry needs to build confidence in its ability to manage Arctic oil spills
- Opportunity to share information to other industries and to avoid duplication of efforts
- IOGP is developing a webtool to give perspective and resources for Arctic oil spill preparedness and response
 - Prevent Control Respond
 - Risk management & links to resources, standards, guidelines, JIP findings etc.

Acknowledgements Thank You Questions

For more information please contact:

Wendy Brown wb@iogp.org
Felicite Robertson fr@iogp.org

www.iogp.org

Registered Office

City Tower
40 Basinghall Street
14th Floor
London EC2V 5DE
United Kingdom
T +44 (0)20 3763 9700
F +44 (0)20 3763 9701
reception@iogp.org

Brussels Office

Bd du Souverain,165 4th Floor B-1160 Brussels Belgium T +32 (0)2 566 9150 F +32 (0)2 566 9159